Abstract
Forest fires have been a major threat to the environment throughout history. In order to mitigate its consequences, we present, in a first of a series of works, a mathematical model with the purpose of predicting fire spreading in a given land portion divided into patches, considering the area and the rate of spread of each patch as inputs. The rate of spread can be estimated from previous knowledge on fuel availability, weather and terrain conditions. We compute the time duration of the spreading process in a land patch in order to construct and parametrize a landscape network, using cellular automata simulations. We use the multilayer network model to propose a network of networks at the landscape scale, where the nodes are the local patches, each with their own spreading dynamics. We compute some respective network measures and aim, in further work, for the establishment of a fire-break structure according to increasing accuracy simulation results.
Subject
Applied Mathematics,Computational Mathematics,General Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献