Remote Monitoring the Parameters of Interest in the 18O Isotope Separation Technological Process

Author:

Codoban Adrian1,Silaghi Helga1,Dale Sanda1ORCID,Muresan Vlad2

Affiliation:

1. Department of Control Systems Engineering and Management, University of Oradea, 410087 Oradea, Romania

2. Automation Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania

Abstract

This manuscript presents the remote monitoring of the main parameters in the 18O isotope separation technological process. It proposes to monitor the operation of the five cracking reactors in the isotope production system, respectively, the temperature in the preheating furnaces, the converter reactors and the cracking reactors. In addition, it performs the monitoring of the two separation columns from the separation cascade structure, respectively, the concentrations of the produced 18O isotope and the input nitric oxides flows. Even if the production process is continuously monitored by teams of operators, the professionals who designed the technical process and those who can monitor it remotely have the possibility to intervene with the view of making the necessary adjustments. Based on the processing of experimental data, which was gathered from the actual plant, the proposed original model of the separation cascade functioning was developed. The process computer from the monitoring system structure runs the proposed mathematical model in parallel with the real plant and estimates several signal values, which are essential to be known by the operators in order to make the appropriate decisions regarding the plant operation. The separation process associated with the final separation column from the separation cascade structure is modeled as a fractional-order process with variable and adjustable differentiation order, which represents another original aspect. Neural networks have been employed in order to implement the proposed mathematical model. The accuracy, validity and efficiency in the operation of the proposed mathematical model is demonstrated through the simulation results presented in the final part of the manuscript.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3