Study on the Hydraulic Characteristics of an Eccentric Tapering Outlet Pressure Box Culvert in a Pumping Station

Author:

Chen Ye-Xin1,Xi Bin1,Chen Zhigang1,Shen Shixuan1

Affiliation:

1. College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

Abstract

The outlet pressure box culvert is often used as the drainage building of a pumping station. Because of its compact structure, it produces transverse flow velocity and then forms poor flow patterns, such as bias flow, reflux, and flow separation, which affect the discharge efficiency of the pumping station. Based on the combination of a physical model test and numerical simulation, the hydraulic characteristics of an eccentric tapering outlet pressure box culvert were analyzed. Focusing on the poor flow pattern in the box culvert, different optimization schemes were proposed to adjust the flow pattern. The flow pattern, transverse velocity distribution ratio (which represents the proportion of transverse velocity in velocity), average angle of the axial velocity, axial velocity uniformity, and pressure distribution of each scheme were compared to obtain the best scheme. The results show that the combination scheme of “diversion pier position and angle with deflecting flow baseplate” has the best optimization effect on the flow pattern. This scheme can effectively improve the bad flow pattern, significantly reduce the transverse velocity distribution ratio, and make the pressure distribution on both sides of the long diversion pier uniform. The axial velocity uniformity was increased by 17.45%, and the average angle of the axial velocity was increased by 8.23°.

Funder

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3