Analyzing the Attractiveness of Food Images Using an Ensemble of Deep Learning Models Trained via Social Media Images

Author:

Morinaga Tanyaboon1,Patanukhom Karn23,Somchit Yuthapong2ORCID

Affiliation:

1. Data Science Consortium, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand

2. Department of Computer Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand

3. Advanced Technology and Innovation Management for Creative Economy Research Group, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

With the growth of digital media and social networks, sharing visual content has become common in people’s daily lives. In the food industry, visually appealing food images can attract attention, drive engagement, and influence consumer behavior. Therefore, it is crucial for businesses to understand what constitutes attractive food images. Assessing the attractiveness of food images poses significant challenges due to the lack of large labeled datasets that align with diverse public preferences. Additionally, it is challenging for computer assessments to approach human judgment in evaluating aesthetic quality. This paper presents a novel framework that circumvents the need for explicit human annotation by leveraging user engagement data that are readily available on social media platforms. We propose procedures to collect, filter, and automatically label the attractiveness classes of food images based on their user engagement levels. The data gathered from social media are used to create predictive models for category-specific attractiveness assessments. Our experiments across five food categories demonstrate the efficiency of our approach. The experimental results show that our proposed user-engagement-based attractiveness class labeling achieves a high consistency of 97.2% compared to human judgments obtained through A/B testing. Separate attractiveness assessment models were created for each food category using convolutional neural networks (CNNs). When analyzing unseen food images, our models achieve a consistency of 76.0% compared to human judgments. The experimental results suggest that the food image dataset collected from social networks, using the proposed framework, can be successfully utilized for learning food attractiveness assessment models.

Funder

Chiang Mai University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3