Image-Based Leaf Disease Recognition Using Transfer Deep Learning with a Novel Versatile Optimization Module

Author:

Radočaj Petra1,Radočaj Dorijan2ORCID,Martinović Goran3ORCID

Affiliation:

1. Layer d.o.o., Vukovarska cesta 31, 31000 Osijek, Croatia

2. Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia

3. Faculty of Electrical Engineering, Computer Science and Information Technology, Josip Juraj Strossmayer University of Osijek, Kneza Trpimira 2B, 31000 Osijek, Croatia

Abstract

Due to the projected increase in food production by 70% in 2050, crops should be additionally protected from diseases and pests to ensure a sufficient food supply. Transfer deep learning approaches provide a more efficient solution than traditional methods, which are labor-intensive and struggle to effectively monitor large areas, leading to delayed disease detection. This study proposed a versatile module based on the Inception module, Mish activation function, and Batch normalization (IncMB) as a part of deep neural networks. A convolutional neural network (CNN) with transfer learning was used as the base for evaluated approaches for tomato disease detection: (1) CNNs, (2) CNNs with a support vector machine (SVM), and (3) CNNs with the proposed IncMB module. In the experiment, the public dataset PlantVillage was used, containing images of six different tomato leaf diseases. The best results were achieved by the pre-trained InceptionV3 network, which contains an IncMB module with an accuracy of 97.78%. In three out of four cases, the highest accuracy was achieved by networks containing the proposed IncMB module in comparison to evaluated CNNs. The proposed IncMB module represented an improvement in the early detection of plant diseases, providing a basis for timely leaf disease detection.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3