An Efficient Probabilistic Algorithm to Detect Periodic Patterns in Spatio-Temporal Datasets

Author:

Gutiérrez-Soto Claudio1ORCID,Galdames Patricio2ORCID,Palomino Marco A.3ORCID

Affiliation:

1. Departamento de Sistemas de Información, Universidad del Bío-Bío, Concepción 4030000, Chile

2. Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción 4090000, Chile

3. School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, UK

Abstract

Deriving insight from data is a challenging task for researchers and practitioners, especially when working on spatio-temporal domains. If pattern searching is involved, the complications introduced by temporal data dimensions create additional obstacles, as traditional data mining techniques are insufficient to address spatio-temporal databases (STDBs). We hereby present a new algorithm, which we refer to as F1/FP, and can be described as a probabilistic version of the Minus-F1 algorithm to look for periodic patterns. To the best of our knowledge, no previous work has compared the most cited algorithms in the literature to look for periodic patterns—namely, Apriori, MS-Apriori, FP-Growth, Max-Subpattern, and PPA. Thus, we have carried out such comparisons and then evaluated our algorithm empirically using two datasets, showcasing its ability to handle different types of periodicity and data distributions. By conducting such a comprehensive comparative analysis, we have demonstrated that our newly proposed algorithm has a smaller complexity than the existing alternatives and speeds up the performance regardless of the size of the dataset. We expect our work to contribute greatly to the mining of astronomical data and the permanently growing online streams derived from social media.

Funder

Universidad del Bío-Bío, Chile

University of Aberdeen

Publisher

MDPI AG

Reference43 articles.

1. Librarians in the Era of Artificial Intelligence and the Data Deluge;Frederick;Libr. Tech News,2020

2. Multi-Sensor Fusion Methodology for Enhanced Land Vehicle Positioning;Li;Inf. Fusion,2019

3. Reflections and Speculations on the Progress in Geographic Information Systems (GIS): A Geographic Perspective;Batty;Int. J. Geogr. Inf. Sci.,2019

4. Spatio-Temporal Database and its Models: A Review;Nandal;IOSR J. Comput. Eng.,2013

5. Learning Spatial Patterns and Temporal Dependencies for Traffic Accident Severity Prediction: A Deep Learning Approach;Alhaek;Knowl. Based Syst.,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3