Feedstocks of Aluminum and 316L Stainless Steel Powders for Micro Hot Embossing

Author:

Emadinia Omid,Vieira Maria,Vieira Manuel

Abstract

In metal powder, shaping the preparation and characterization of the feedstock is an aspect commonly recognized as fundamental. An optimized composition is required to ensure the successful shaping of the feedstock. In this study, a commercial binder system, pure aluminum and 316L austenitic stainless-steel powders were used for micro hot embossing. The optimization process revealed that powder characteristics such as shape and the stability of the torque mixing, were important parameters. Manipulating the feedstock composition by adding multi-walled carbon nanotubes or stearic acid or using a higher powder concentration considerably influenced the torque mixing values. The steady state of torque mixing was achieved for all feedstocks. This torque behavior indicates a homogeneous feedstock, which was also confirmed by microscopic observations. Nevertheless, an extruding process was required for greater homogeneity of the aluminum feedstocks. The presence of the carbon nanotubes increased the homogeneity of green parts and reduced microcrack formation. The roughness was essentially dependent on the feedstock composition and on the plastic deformation of the elastomer die. Shaping the prepared feedstocks (with or without carbon nanotube) was achieved by the optimized powder concentrations and it did not increase by the stearic acid addition.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced embossing materials;Hot Embossing;2024

2. Micro metal powder hot embossing: influence of binder on austenitic stainless steel microparts replicability;Powder Metallurgy;2021-07-13

3. Development and characterization of AISI 316L micro parts produced by metal powder hot embossing;The International Journal of Advanced Manufacturing Technology;2021-01-25

4. Recent developments in hot embossing – a review;Materials and Manufacturing Processes;2020-10-16

5. Metal Micro-Forming;Metals;2020-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3