The Effect of Different Arc Currents on the Microstructure and Tribological Behaviors of Cu Particle Composite Coating Synthesized on GCr15 Steel by PTA Surface Alloying

Author:

Xiong Yibo,Lin Dongqing,Zheng Zhizhen,Li Jianjun,Deng Tiantian

Abstract

In order to improve the tribological performance of the slanted guide pillar, Cu particle reinforced composite coatings were synthesized on the surface of GCr15 steel using the plasma transferred arc (PTA) alloying technique. A systematic experimental investigation was conducted to study the effects of PTA current on the microstructure and microhardness of alloyed coatings. In addition, tribological behaviors at room temperature (RT) and high temperature (HT) were investigated. The results indicate that at low PTA current (70A), due to the insufficient current, no Cu particles are dissolved in the alloyed coating and a Cu-rich layer is observed on the surface. With the increase in the PTA current, Cu particles are gradually dissolved into the alloyed layer and the microstructure of alloyed coating mainly consists of bamboo-like martensite, retained austenite, and dispersed Cu particles. The microhardness of the PTA samples is approximately four times that of the untreated sample. The tribological results exhibit that an abrasive wear at RT and slight abrasive wear with oxidation wear at HT are the dominant wear mechanisms of alloyed coatings. The PTA samples show far superior antifriction properties compared to the untreated and remolten samples at both RT and HT, which can be attributed to the formation of lubricating Cu films and the improvement in microhardness.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3