Assessment of Indoor Air Quality in Academic Buildings Using IoT and Deep Learning

Author:

Marzouk MohamedORCID,Atef Mohamed

Abstract

Humans spend most of their lifetime indoors; thus, it is important to keep indoor air quality within acceptable levels. As a result, many initiatives have been developed by multiple research centers or through academic studies to address the harmful effects of increased indoor pollutants on public health. This research introduces a system for monitoring different air parameters to evaluate the indoor air quality (IAQ) and to provide real-time readings. The proposed system aims to enhance planning and controlling measures and increase both safety and occupants’ comfort. The system combines microcontrollers and electronic sensors to form an Internet of Things (IoT) solution that collects different indoor readings. The readings are then compared with outdoor readings for the same experiment period and prepared for further processing using artificial intelligence (AI) models. The results showed the high effectiveness of the IoT device in transferring data via Wi-Fi with minimum disruptions and missing data. The average readings for temperature, humidity, air pressure, CO2, CO, and PM2.5 in the presented case study are 30 °C, 42%, 100,422 pa, 460 ppm, 2.2 ppm, and 15.3 µ/m3, respectively. The developed model was able to predict multiple air parameters with acceptable accuracy. It can be concluded that the proposed system proved itself as a powerful forecasting and management tool for monitoring and controlling IAQ.

Funder

Academy of Scientific Research and Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference46 articles.

1. Indoor air quality [Electronic version];Brown,2019

2. Indoor Air Quality and Sustainability Management—Case Study in Three Portuguese Healthcare Units

3. Categorizing Building Certification Systems According to the Definition of Sustainable Building;Zimmermann,2019

4. Air quality progress in North American megacities: A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3