Ticket Allocation Optimization of Fuxing Train Based on Overcrowding Control: An Empirical Study from China

Author:

Wang YuORCID,Shan Xinghua,Wang Hongye,Zhang Junfeng,Lv Xiaoyan,Wu Jinfei

Abstract

At the peak of passenger flow, some passengers extend travel sections, which will be likely to lead to overcrowding of high-speed railway (HSR) trains. Therefore, the problem of train overcrowding control needs to be considered in ticket allocation. Firstly, by simulating the passenger demand function and utility function, an optimization model of ticket allocation for multiple trains and multiple stops with the goal of maximizing revenue is constructed. Secondly, the concepts of the travel extension coefficient and risk coefficient are introduced, the number of passengers is estimated under the risk coefficient as the probability, and the total number of passengers on the train arriving at any station is obtained. Thus, preventing the number of passengers on the train from exceeding the train capacity is introduced to the ticket allocation optimization model of multiple trains and multiple stops as a constraint. Finally, this model is solved by the particle swarm optimization algorithm (PSO). The research results show that the idea of controlling passenger numbers so as not to exceed train capacity based on ticket allocation proposed in this paper has strong practical feasibility. By reasonably and accurately allocating the tickets to the departure terminal section and long-distance terminal sections, it can ensure that, even if there are some passengers extending their travel section, the train will not be overcrowded under a certain probability, improving the train safety and passenger travel experiences.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3