Abstract
The thermal conductivity of soils is a fundamental parameter for the design of ground-source heat pump systems (GSHPs) and energy geostructures. This paper presents a comprehensive evaluation of the physical, mineralogical, and thermal characteristics of typical coastal soils from Tabasco, Mexico. Twenty-five soil samples from four different strata were studied using the thermal needle probe method, X-ray diffractometry, scanning electron microscopy, and standard geotechnical soil classification tests. The results showed a significant correlation between the dry density and porosity with the thermal conductivity of the studied samples, which ranged between 1.17 and 2.32 W m−1 K−1. The performed statistical analyses indicated that coarse-grained soils had larger thermal conductivities and higher variability than fine-grained soils. Additionally, the performance of six models to estimate the thermal conductivity of soils was validated against the experimental data. All models provided accurate estimations for fine-grained soils, but only the effective medium theory (EMT) showed an adequate fit for coarse-grained soils. The results represent one of the first datasets for the thermal properties of Mexican soils. They will contribute to the implementation of GSHPs and energy geostructures in the country and locations with similar subsoil conditions, especially where time and resources are not available for their experimental determination.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献