Determination of Thermal Conductivity Properties of Coastal Soils for GSHPs and Energy Geostructure Applications in Mexico

Author:

López-Acosta Norma PatriciaORCID,Zaragoza-Cardiel Alan Igor,Barba-Galdámez David FranciscoORCID

Abstract

The thermal conductivity of soils is a fundamental parameter for the design of ground-source heat pump systems (GSHPs) and energy geostructures. This paper presents a comprehensive evaluation of the physical, mineralogical, and thermal characteristics of typical coastal soils from Tabasco, Mexico. Twenty-five soil samples from four different strata were studied using the thermal needle probe method, X-ray diffractometry, scanning electron microscopy, and standard geotechnical soil classification tests. The results showed a significant correlation between the dry density and porosity with the thermal conductivity of the studied samples, which ranged between 1.17 and 2.32 W m−1 K−1. The performed statistical analyses indicated that coarse-grained soils had larger thermal conductivities and higher variability than fine-grained soils. Additionally, the performance of six models to estimate the thermal conductivity of soils was validated against the experimental data. All models provided accurate estimations for fine-grained soils, but only the effective medium theory (EMT) showed an adequate fit for coarse-grained soils. The results represent one of the first datasets for the thermal properties of Mexican soils. They will contribute to the implementation of GSHPs and energy geostructures in the country and locations with similar subsoil conditions, especially where time and resources are not available for their experimental determination.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference44 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3