Abstract
Offshore wind farms (OWFs) are important infrastructure which provide an alternative and clean means of energy production worldwide. The offshore wind industry has been continuously growing. Over the years, however, it has become evident that OWFs are facing a variety of safety and security challenges. If not addressed, these issues may hinder their progress. Based on these safety and security goals and on a Bayesian network model, this work presents a methodological approach for structuring and organizing expert knowledge and turning it into a probabilistic model to assess the safety and security of OWFs. This graphical probabilistic model allowed us to create a high-level representation of the safety and security state of a generic OWF. By studying the interrelations between the different functions of the model, and by proposing different scenarios, we determined the impacts that a failing function may have on other functions in this complex system. Finally, this model helped us define the performance requirements of such infrastructure, which should be beneficial for optimizing operation and maintenance.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference39 articles.
1. Global Offshore Wind Report 2021;Lee,2021
2. Industrial life cycle: relevance of national markets in the development of new industries for energy technologies – the case of wind energy
3. The Power of Our Ocean;Sykes,2020
4. Wind Energy in Europe—2020 Statistics and the Outlook for 2021–2025;Komusanac,2021
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献