Abstract
This paper presents the modeling and simulation of a Multi-Source Power System (MSPS)—composed of two renewable energy sources and supported by a Battery Energy Storage System (BESS)—to supply the ventilation and heating system for a temperature-controlled agricultural greenhouse. The first one is a photovoltaic (PV) generator connected to a DC/AC inverter and the second one is a wind turbine connected to a Permanent Magnet Synchronous Generator (PMSG). The temperature contribution in the model of the PV generator is deeply studied. A Maximum Power Point Tracking (MPPT) control based on fuzzy logic is used to drive a SEPIC converter to feed the maximum power to the greenhouse actuators. The operation of the actuators (ventilation and heating systems), on the basis of the mismatch between the internal temperature and the reference one, is controlled by a PI controller optimized by fuzzy logic, for more robust results. The simulation of the system is carried out in a Matlab/Simulink environment and its validation is based on the comparison between the simulated and experimental data for a test greenhouse, located in the Faculty of Science in Tunis. The results show that the proposed system provides an efficient solution for controlling the microclimate of the agricultural greenhouse in different periods of the year.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献