Regression Models Utilization to the Underground Temperature Determination at Coal Energy Conversion

Author:

Durdán MilanORCID,Benková Marta,Laciak MarekORCID,Kačur JánORCID,Flegner Patrik

Abstract

The underground coal gasification represents a technology capable of obtaining synthetic coal gas from hard-reached coal deposits and coal beds with tectonic faults. This technology is also less expensive than conventional coal mining. The cavity is formed in the coal seam by converting coal to synthetic gas during the underground coal gasification process. The cavity growth rate and the gasification queue’s moving velocity are affected by controllable variables, i.e., the operation pressure, the gasification agent, and the laboratory coal seam geometry. These variables can be continuously measured by standard measuring devices and techniques as opposed to the underground temperature. This paper researches the possibility of the regression models utilization for temperature data prediction for this reason. Several regression models were proposed that were differed in their structures, i.e., the number and type of selected controllable variables as independent variables. The goal was to find such a regression model structure, where the underground temperature is predicted with the greatest possible accuracy. The regression model structures’ proposal was realized on data obtained from two laboratory measurements realized in the ex situ reactor. The obtained temperature data can be used for visualization of the cavity growth in the gasified coal seam.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3