Experimental Analysis of Temperature Influence on Waste Tire Pyrolysis

Author:

Čepić ZoranORCID,Mihajlović Višnja,Đurić Slavko,Milotić Milan,Stošić Milena,Stepanov Borivoj,Ilić Mićunović Milana

Abstract

Pyrolysis is an optimal thermochemical process for obtaining valuable products (char, oil, and gas) from waste tires. The preliminary research was done on the three groups of samples acquired by cutting the same waste tire of a passenger vehicle into cylindrical granules with a base diameter of 3, 7, and 11 mm. Each batch weighed 10 g. The heating rate was 14 °C/min, and the final pyrolysis temperature was 750 °C, with 90 s residence time. After the pyrolysis product yields were determined for all of the three sample groups, further research was performed only on 3 mm granules, with the same heating rate, but with altered final pyrolytic temperatures (400, 450, 500, 550, 600, 650, 700, and 750 °C). The results of this study show that thermochemical decomposition of the waste tire sample takes place in the temperature range of 200–500 °C, with three distinct phases of degradation. The highest yield of the pyrolytic oil was achieved at a temperature of 500 °C, but further heating of volatile matters reduced the oil yield, and simultaneously increased the yield of gas, due to the existence of secondary cracking reactions. The analysis of pyrolytic oil and char showed that these products can be used as fuel.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3