Abstract
The application of expansion turbines at natural gas pressure reduction stations (PRS) is considered in order to recover energy contained in the natural gas. This energy is irretrievably lost at the reduction stations which use the traditional pressure reducer. Expanders allow for the electricity production for PRS own needs and for resale. The paper presents an analysis of the possibility of using turboexpanders at PRS in Poland. Authors performed static simulations for the assumed data sets and dynamic simulations for annual data from selected representative natural gas reduction and measurement stations. Energy balances are presented for the discussed scenarios that compare the energy requirements of natural gas pressure reduction stations which use a classic pressure reducer or turboexpander (TE). Using static simulations, authors investigated whether the use of a turboexpander is economically justified for the case if it is used only to supply the reduction station with electricity. Dynamic analyses were carried out using real data. In addition, static analyses were performed for a natural gas reduction and measurement station using a PEM fuel cell for the production of electricity in a combined gas heating system. At higher inlet temperatures and pressures, the expansion process was more economical due to the lower heat power requirement and the greater amount of produced electricity. The PRS with the turboexpander compared to the PRS with the reducer required the supply of thermal energy which did not allow the PRS to lower operating costs for the assumed prices of heat and electricity. The reduction system with the PEM fuel cell in the combined heating system positively achieved lower operating costs of the PRS (without taking into account the investment costs). Total annual costs for PRS with a reducer was PLN 1,593,167.04, and for PRS with TE + PEM PLN 1,430,595.60—the difference was PLN 108,571.44 in favor of the arrangement with TE and PEM. The payback time should be investigated, although the use of such a system gives the impression of oversizing. An increase in the electricity purchase price and a decrease in the natural gas purchase price may contribute to the investment in the future.
Funder
The Natural Gas Department at Drilling Oil & Gas Faculty
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference17 articles.
1. Exergy-Based Analysis of Gas Transmission System with Application to Yamal-Europe Pipeline;Appl. Energy,2011
2. Osiadacz, A., and Chaczykowski, M. (2010). Stacje Gazowe: Teoria, Projektowanie, Eksploatacja, Fluid Systems.
3. Szargut, J., and Ziębik, A. (1998). Podstawy Energetyki Cieplnej, Wydawnictwo Naukowe PWN SA.
4. Performance Assessment of a Novel Natural Gas Pressure Reduction Station Equipped with Parabolic Trough Solar Collectors;Renew. Energy,2018
5. Rheuban, J. (2022, September 16). Turboexpanders: Harnessing the Hidden Potential of Our Natural Gas Distribution System. Available online: https://jacobrheuban.com/2009/03/09/turboexpanders-harnessing-the-hidden-potential-of-our-natural-gas-distribution-system/#more-442.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献