Simple Diagnosis of Lifetime Characteristics of Used Automotive Storage Battery Cells

Author:

Shimoi Norihiro,Tohji Kazuyuki

Abstract

In constructing a nanogrid for the effective use of renewable energy, such as solar power, the use of storage batteries is considered as a stabilizer for capturing renewable energy and outputting it in an energy-saving manner. Storage batteries that are included in a battery management system that includes their reuse in a vehicle are expected to be discharged into the market in large quantities over their long lifetime. Storage battery modules obtained from an unspecified number of electric vehicles (EVs), hybrid vehicles (HVs) and plug-in hybrid vehicles (PHVs) will vary in their charge/discharge capacity from module to module and it is crucial to determine the stability in terms of the state of charge and the state of health of the modules before their reuse. However, in an automotive storage battery module, multiple battery cells are connected in series or in parallel, and there is no established method of managing the variation in the output of each battery cell. Therefore, in this study, we propose an accurate charge–discharge state estimation technique for each cell using impedance characteristic evaluation based on an electrochemical method as a simple and quick method of grasping the charge–discharge performance of storage batteries equipped in a vehicle.

Funder

JKA Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3