Abstract
We present a novel meshing and simulation approach for wind farms, featuring realignment and mesh adaptation. The turbines are modeled with actuator discs, which are discretized by means of an adaptation process to represent a level set function. The level-set-based simulation framework is combined with an adaptation cycle to capture both the solution and the actuator discs. In addition, we devise a turbine realignment process which takes into account the actual flow in the actuator disc configuration. Several results are presented to highlight the features of the approach. First, the adaptive simulation approach is validated, fulfilling the theoretical convergence rates and improving the accuracy of the boundary tight representations. Second, the adaptive simulation process is applied to a full wind farm configuration featuring 219 turbines, illustrating that is it well devised for complex wind farm configurations. Third, the turbine reorientation process is validated in a one turbine scenario. Finally, the realignment simulation framework is applied in a wind farm featuring 115 turbines. The presented results outline the significance of the proposed work, enabling turbine realignment and mesh adaptation to perform accurate simulations of complex wind farm configurations.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献