Photovoltaic Power Generation Forecasting for Regional Assessment Using Machine Learning

Author:

Borunda MonicaORCID,Ramírez Adrián,Garduno Raul,Ruíz GerardoORCID,Hernandez Sergio,Jaramillo O. A.

Abstract

Solar energy currently plays a significant role in supplying clean and renewable electric energy worldwide. Harnessing solar energy through PV plants requires problems such as site selection to be solved, for which long-term solar resource assessment and photovoltaic energy forecasting are fundamental issues. This paper proposes a fast-track methodology to address these two critical requirements when exploring a vast area to locate, in a first approximation, potential sites to build PV plants. This methodology retrieves solar radiation and temperature data from free access databases for the arbitrary division of the region of interest into land cells. Data clustering and probability techniques were then used to obtain the mean daily solar radiation per month per cell, and cells are clustered by radiation level into regions with similar solar resources, mapped monthly. Simultaneously, temperature probabilities are determined per cell and mapped. Then, PV energy is calculated, including heat losses. Finally, PV energy forecasting is accomplished by constructing the P50 and P95 estimations of the mean yearly PV energy. A case study in Mexico fully demonstrates the methodology using hourly data from 2000 to 2020 from NSRDB. The proposed methodology is validated by comparison with actual PV plant generation throughout the country.

Funder

Universidad Nacional Autónoma de México

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference49 articles.

1. International Energy Agency (2021). Renewables 2021 Analysis and Forecast to 2026, International Energy Agency.

2. Solar PV Power Plants Site Selection: A Review;Advances in Renewable Energies and Power Technologies,2018

3. Using GIS analytics and social preference data to evaluate utility-scale solar power site suitability;Renew. Energy,2015

4. Determining criteria for optimal site selection for solar power plants;Geomat. Land Manag. Landsc.,2017

5. World Meteorological Organization (2020). Guide to Instruments and Methods of Observation, WMO. [2020 ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3