Abstract
Ordinary Portland cement (OPC) is currently the preferred material for the creation of barriers in wells during their construction and abandonment globally. OPC, however, is a very carbon-intensive material with some inherent technical weaknesses. These include a low casing-to-cement bond strength which may allow for the formation of micro-annuli, which in turn can become a conduit for greenhouse gas transport (primarily of methane, a powerful greenhouse gas) to surface. Alkali-activated materials (AAMs), also known as geopolymers, have a much lower manufacturing carbon footprint than OPC and can be a good alternative to OPC for primary and remedial well cementing applications. This paper reports on a comprehensive study into the use of Class F fly ash-based geopolymers for a large variety of downhole well conditions, ranging from lower-temperature surface and intermediate casing cementing conditions to much higher temperature conditions (up to 204 °C (400 °F)) that can be encountered in high-pressure, high-temperature (HPHT) wells and geothermal wells. The rheological and mechanical properties of alkali-activated fly ash with six different sodium and potassium-based hydroxide and silicate activators were measured and compared to OPC. The results show that geopolymer formulation properties can be tuned to a variety of downhole cementing conditions. With the application of a suitable alkaline activator, geopolymers exhibit good compressive and tensile strength and an outstanding casing-to-cement bond strength of up to 8.8 MPa (1283 psi), which is more than an order of magnitude higher than OPC. This has important implications for preventing the creation of micro-annuli as a result of casing-to-cement interface debonding, thereby preventing the potential leakage of methane to the atmosphere on future wells that use geopolymers rather than OPC for barrier creation.
Funder
CODA Industry Affiliate Program (IAP) at the University of Texas at Austin
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference43 articles.
1. Making Net Zero Matter;Wash. Lee Law Rev.,2022
2. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development;Renew. Sustain. Energy Rev.,2016
3. Achieving Net Zero Emissions Requires the Knowledge and Skills of the Oil and Gas Industry;Front. Clim.,2020
4. Kang, M. (2014). CO2, Methane, and Brine Leakage through Subsurface Pathways: Exploring Modeling, Measurement, and Policy Options. [Ph.D. Thesis, Princeton University].
5. Reducing methane emissions from abandoned oil and gas wells: Strategies and costs;Energy Policy,2019
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献