Fly Ash-Based Geopolymers as Lower Carbon Footprint Alternatives to Portland Cement for Well Cementing Applications

Author:

Horan Cameron,Genedy Moneeb,Juenger Maria,van Oort EricORCID

Abstract

Ordinary Portland cement (OPC) is currently the preferred material for the creation of barriers in wells during their construction and abandonment globally. OPC, however, is a very carbon-intensive material with some inherent technical weaknesses. These include a low casing-to-cement bond strength which may allow for the formation of micro-annuli, which in turn can become a conduit for greenhouse gas transport (primarily of methane, a powerful greenhouse gas) to surface. Alkali-activated materials (AAMs), also known as geopolymers, have a much lower manufacturing carbon footprint than OPC and can be a good alternative to OPC for primary and remedial well cementing applications. This paper reports on a comprehensive study into the use of Class F fly ash-based geopolymers for a large variety of downhole well conditions, ranging from lower-temperature surface and intermediate casing cementing conditions to much higher temperature conditions (up to 204 °C (400 °F)) that can be encountered in high-pressure, high-temperature (HPHT) wells and geothermal wells. The rheological and mechanical properties of alkali-activated fly ash with six different sodium and potassium-based hydroxide and silicate activators were measured and compared to OPC. The results show that geopolymer formulation properties can be tuned to a variety of downhole cementing conditions. With the application of a suitable alkaline activator, geopolymers exhibit good compressive and tensile strength and an outstanding casing-to-cement bond strength of up to 8.8 MPa (1283 psi), which is more than an order of magnitude higher than OPC. This has important implications for preventing the creation of micro-annuli as a result of casing-to-cement interface debonding, thereby preventing the potential leakage of methane to the atmosphere on future wells that use geopolymers rather than OPC for barrier creation.

Funder

CODA Industry Affiliate Program (IAP) at the University of Texas at Austin

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference43 articles.

1. Making Net Zero Matter;Wash. Lee Law Rev.,2022

2. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development;Renew. Sustain. Energy Rev.,2016

3. Achieving Net Zero Emissions Requires the Knowledge and Skills of the Oil and Gas Industry;Front. Clim.,2020

4. Kang, M. (2014). CO2, Methane, and Brine Leakage through Subsurface Pathways: Exploring Modeling, Measurement, and Policy Options. [Ph.D. Thesis, Princeton University].

5. Reducing methane emissions from abandoned oil and gas wells: Strategies and costs;Energy Policy,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3