Fault Diagnosis Algorithm of Transformer and Circuit Breaker in Traction Power Supply System Based on IoT

Author:

Wu Zhensheng,Zhang Zhongli,Wang Wenlin,Xing Ting,Xue Zhao

Abstract

Transformers and circuit breakers are essential equipment in traction power supply systems. Once a fault occurs, it will affect the train’s regular operation and even threaten passengers’ personal safety. Therefore, it is essential to diagnose the faults of the transformers and circuit breakers of the traction power supply system. At present, power companies have made many achievements in fault diagnosis of power equipment, but there are still problems with real-time and accuracy. The Internet of Things (IoT) is a technology that connects different types of terminal devices for information exchange and communication to achieve intelligence. It includes data acquisition and transmission, information interaction, processing, and decision-making from bottom to top. It uses sensor terminals to obtain real-time status information on electrical equipment. Moreover, it conducts real-time monitoring and intelligent processing of the equipment status of the traction power supply system. In this paper, the multi-data fusion technology of the IoT combines the real-time information of electrical equipment with fault diagnosis to realize the fault diagnosis of transformers and circuit breakers. First, we built an equipment fault diagnosis system based on the multi-terminal data fusion technology of the IoT. Secondly, the transformer fault diagnosis model is established. We adopt the BP neural network algorithm based on particle swarm optimization (PSO) to realize transformer fault diagnosis and use PSO to optimize the feature subset to improve the diagnosis performance. Finally, the fault diagnosis model of the vacuum circuit breaker is established. We select the current change and time node as typical fault feature quantities and use the PSO–BP neural network algorithm to realize the fault diagnosis of the circuit breaker.

Funder

National Key Research and Development Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference23 articles.

1. Wu, Z., Zhang, Z., He, J., and Yue, B. (2021, January 22–24). Transformer Fault Diagnosis Algorithm for Traction Power Supply System Based on IoT. Proceedings of the 5th International Conference on Electrical Engineering and Information Technologies for Rail Transportation (EITRT), Qingdao, China. Lecture Notes in Electrical Engineering.

2. Investigation of feature selection techniques for improving efficiency of power transformer condition assessment;IEEE Trans. Dielectr. Electr. Insul.,2014

3. Application of wavelet neural network based on improved particle swarm algorithm in transformer fault diagnosis;Power Syst. Prot. Control.,2014

4. Application of Feature Optimization and Fuzzy Theory in Transformer Fault Diagnosis;Power Syst. Prot. Control.,2016

5. Transformer Fault Diagnosis Based on Compact Fusion Fuzzy Set and Fault Tree;High Volt. Technol.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of multiple-faults of high-voltage circuit breakers based on non-negative matrix decomposition;Global Energy Interconnection;2024-04

2. IoT Terminal Architecture Model;Journal of Physics: Conference Series;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3