Optical Properties of Coal after Ex-Situ Experimental Simulation of Underground Gasification at Pressures of 10 and 40 bar

Author:

Nowak JacekORCID,Kokowska-Pawłowska Magdalena,Komorek Joanna,Wiatowski MarianORCID,Kapusta KrzysztofORCID,Adamczyk ZdzisławORCID

Abstract

Coal gasification experiments were carried out in a reactor used to simulate underground coal gasification (UCG) processes under ex situ conditions at pressures of 10 and 40 bar. Changes in the optical properties of the organic matter were analyzed and the influence of temperature on coal during the UGC process was subsequently determined. The values of the true maximum reflectance determined for the gasification residue at pressures of 10 and 40 bar, and at distances of 0.75 and 1.75 m, reached a level corresponding to semi-graphite. Furthermore, it was found that the values of the true maximum reflectance and bireflectance decrease with increasing distance from the reactor chamber inlet. In addition, the results show that, regardless of the pressure used during the experiment, the temperature influence on the coal decreased with increasing distance from the reactor chamber inlet. The true temperatures operating during the experiment were higher than those recorded by the thermocouples, regardless of the pressure used. However, it was found that the distance at which the influence of temperature on the coal is still marked during the gasification process depends on the pressure used in the experiment. For example, in the case of the experiment at a pressure of 10 bar, the estimated distance is approximately 60 m, while for a pressure of 40 bar, it is approximately 35 m. These results can, and should, be taken into account for the planning of an UGC process.

Funder

European Union’s Seventh Framework Programme for Research, Technology Development and Demonstration

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3