Optimization of Miller Cycle, EGR, and VNT on Performance and NOx Emission of a Diesel Engine for Range Extender at High Altitude

Author:

Wang Weichao,Wang Guiyong,Wang Zhengjiang,Lei Jilin,Huang Junwei,Nie Xuexuan,Shen Lizhong

Abstract

Due to the increasing sales of extended-range hybrid vehicles and the increasingly stringent emission regulations for light vehicles in China, the performance and emission of diesel engines for range extenders in the plateau region have attracted increasing attention. In order to obtain the superior performance of diesel engines for range extenders operating at high altitudes, a multi-objective optimization of the optimal economic operating point of the diesel engine was performed at an altitude of 1960 m. A diesel engine system model with MC-EGR-VNT (MEV) technology was developed using GT-Power based on the data of the engine bench to analyze the effects of the Miller cycle (MC), exhaust gas recirculation (EGR), and variable nozzle turbine (VNT) technologies on the power, economy, and emission performance of high-speed diesel engines. The response surface method (RSM) design was carried out with the Miller cycle rate (MCR), EGR value opening, VNT nozzle opening as variable factors and torque, brake-specific fuel consumption (BFSC), nitrogen oxide (NOx) emission as optimization objectives based on Box Behnken Design (BBD). The optimization results showed that the torque and BFSC remained almost constant, and NOx emission decreased by 59.5% compared with the original machine. The proposed multi-objective optimization method could make the diesel engine with a MEV system achieve a good comprehensive performance.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3