DEMO Divertor Cassette and Plasma facing Unit in Vessel Loss-of-Coolant Accident

Author:

Dongiovanni Danilo NicolaORCID,D’Onorio MatteoORCID,Caruso GianfrancoORCID,Pinna Tonio,Porfiri Maria Teresa

Abstract

As part of the pre-conceptual design activities for the European DEMOnstration plant, a carefully selected set of safety analyses have been performed to assess plant integrated performance and the capability to achieve expected targets while keeping it in a safe operation domain. The DEMO divertor is the in-vessel component in charge of exhausting the major part of the plasma ions’ thermal power in a region far from the plasma core to control plasma pollution. The divertor system accomplishes this goal by means of assemblies of cassette and target plasma facing units modules, respectively cooled with two independentheat-transfer systems. A deterministic assessment of a divertor in-vessel Loss-of-Coolant Accident is here considered. Both Design Basis Accident case simulating the rupture of an in-vessel pipe for the divertor cassette cooling loop, and a Design Extension Conditions accident case considering the additional rupture of an independent divertor target cooling loop are assessed. The plant response to such accidents is investigated, a comparison of the transient evolution in the two cases is provided, and design robustness with respect to safety objectives is discussed.

Funder

EUROfusion Consortium, funded by the European Union via the Euratom research and training programme

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference24 articles.

1. Overview of the DEMO staged design approach in Europe Nucl;Fusion,2019

2. Special Issue on European Programme towards DEMO: Outcome of the Pre-Conceptual Design Phase;Fusion Eng. Des.,2022

3. Divertor of the European DEMO: Engineering and technologies for power exhaust;Fusion Eng. Des.,2022

4. IAEA (2016). Considerations on the Application of the IAEA Safety Requirements for the Design of Nuclear Power Plants, IAEA. IAEA-TECDOC-1791.

5. Merrill, B.J. (2007). Recent Updates to the MELCOR 1.8.2 Code for ITER Applications, Idaho National Laboratory.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3