Factoring Permeability Anisotropy in Complex Carbonate Reservoirs in Selecting an Optimum Field Development Strategy

Author:

Krivoshchekov SergeyORCID,Kochnev AlexanderORCID,Kozyrev Nikita,Ozhgibesov Evgeny

Abstract

Current methods of oil and gas field development design rely on reservoir simulation modeling. A reservoir simulation model is a tool to reproduce field development processes and forecast production data. Reservoir permeability is one of the basic properties that determines fluid flow. From existing approaches, the porosity and permeability values should be consistent with petrophysical correlations obtained from core sample tests in the course of development of an absolute permeability cube in the reservoir simulation model. For carbonate reservoirs with complex pore space structure and fractures, the petrophysical correlations are often unstable. To factor in the fluid flow in a fractured rock system, dual-medium models are developed, allowing for matrix and fracture components. Yet in this case, the degree of uncertainty only increases with the introduction of a new parameter: a cross-flow index of fluid migration from matrix to fracture, which is only determined indirectly by results of fluid flow studies conducted in the initial development period, and therefore most often is adaptive. Clearly, for well-studied fields there is an extensive data pool drawn on research findings: core studies, well logging, well flow testing, flowmetry, special well-logging methods (FMI, Sonic Scanner, etc.); the dual-medium model development for such reservoirs is fairly well-founded and supported by actual studies. However, at the start of the field development, the data are incomplete, which renders qualitative dual-medium modeling impossible. This paper proposes an approach to factor in the target’s permeability anisotropy at an early development stage through the integration of well, core and 3D seismic surveys. The reservoir was classified into pore space types, to which different petrophysical correlations were assigned to develop a permeability array, and relative phase permeabilities were studied. The fluid flow model was history-matched with allowance for permeability anisotropy and rock types. Comparative calculations were conducted on the resulting model to select the optimum development strategy for the target.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference55 articles.

1. Lake, L.W. (1985). Short Course Manual, Enhanced Oil Recovery Fundamentals, SPE.

2. Perspectives of development of technologies of radial opening of a layer on deposits of the Perm region;Oil Ind.,2014

3. Influence of Geological Conditions on Wear-out of the Bits in the Riphean Deposits of the Yurubcheno-Tokhomskoye Field;Oil Ind.,2022

4. Improved Production Performance of Heavy Oil Reservoirs with Compacted and Shaled-Out Interlayers;Oil Ind.,2021

5. Creation of a Conceptual Geological Model based on Lithological-Petrographic Research on the Example of the Permo-Carboniferous Deposit of the Usinskoe Deposit;Perm J. Pet. Min. Eng.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3