Abstract
Molten salt reactors (MSRs), as one of the six main technologies of Gen IV, can meet the broad area of sustainability, economics, safety and reliability, proliferation resistance and physical protection goals. One of the main and first challenges in designing molten salt fast reactors (MSFRs) is the selection of an appropriate molten salt fuel system based on the envisaged applications and objectives. In this study’s series, a full-scope evaluation has been conducted about employing either chloride or fluoride salt fuels as the main competitors’ candidates for fuel salt in MSFR designs. Two distinguished projects, EVOL (CNRS, Grenoble-France), based on fluoride salt, and iMAGINE (The University of Liverpool, UK), based on chloride salts, were considered in order to achieve this goal as case studies. The first part of this series (part 1—this article) deals with the investigation of the thermophysical properties of the salt fuel system, criticality search and neutron-flux energy spectrum. An identical typical design of the MSFR core has been considered for a neutronic simulation by using MCNPX V2.7 based on the chemical composition of the fuel salt mentioned in both projects. The thermophysical evaluation has been conducted through literature research and theoretical methods based on the experimental values for the salt component properties. The results of the study are presented for thermophysical properties, including the melting point, vapour pressure/boiling point, specific heat capacity, thermal conductivity and density, in addition to neutronic simulation for the core critical dimension and neutron-flux spectrum of both the chloride- and fluoride-based salt fuel systems. In the discussion of the results, it is concluded that both the chloride and fluoride salt fuel systems have benefits that are seen on different comparative parameters. The delivered data will provide future decision makers with evidence for the salt choice for balancing their design objectives with the opportunities and expectations. Thus, a final selection of the most appropriate salt fuel system to be used in MSFRs will be postponed for more investigation in the final part of this article series, combining the data with different potential user profiles.
Funder
Engineering and Physical Sciences Research Councils
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference49 articles.
1. Pioro, I.L. (2016). Handbook of Generation IV Nuclear Reactors, Elsevier Ltd.
2. IMAGINE—A Disruptive Change to Nuclear or How Can We Make More Out of the Existing Spent Nuclear Fuel and What Has to be Done to Make it Possible in the UK?;Awt-Int. Z. Fuer Kernenerg.,2019
3. Merk, B., Litskevich, D., Whittle, K.R., Bankhead, M., Taylor, R.J., and Mathers, D. (2017). On a long term strategy for the success of nuclear power. Energies, 10.
4. (2013). Challenges Related to the Use of Liquid Metal and Molten Salt Coolants in Advanced Reactors (Standard No. IAEA-TECDOC-1696).
5. Experience With the Molten-Salt Reactor Experiment;Nucl. Appl. Technol.,1970
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献