Wearable Bio-Inspired Pulsating-Flow Cooling for Live Garments Based on a Novel Design of Ferrofluid Micro-Valve

Author:

Tang JiaweiORCID,Luk PatrickORCID

Abstract

Temperature-related frustrations, such as heat exhaustion, heat stroke, hypothermia, and frost damage, are some of the most prevalent health risks encountered by humans. The aggravation may be lethal for individuals who reside or work in conditions of protracted and high temperature. Temperature-control technologies, such as underfloor heating and air conditioners, have been studied and applied to give individuals with a pleasant and, more crucially, an endurable temperature. However, it may be challenging to install these technologies in an exterior or enclosed space. In addition, they are inflexible for individual requirements, such as mobility and personal-temperature management. A wearable bio-inspired pulsing-flow (discontinuous) cooling system, which can significantly enhance cooling performance, is proposed in this work. The proposed system is implemented with valves to generate pulsating flows. Given that traditional mechanical-valve actuation systems continue to face limits in terms of switching frequency, interface wear loss, and size limitations for wearable-garment applications, a ferrofluid-based shape-controllable micro-valve is proposed to reduce the size and weight of the cooling system. An empirical approach is adopted to avoid the extensive computational simulation of the thermo fluidic dynamics involved, so that efforts can be focused on the design of an innovative scaled prototype built from ferrofluid valves positioned in a specific array of the cooling tubes. This allows the performance of continuous and pulsating cooling-flow systems to be compared on the same flow rate baseline. The results demonstrate that the proposed technology not only delivers superior cooling efficiency, but also has the potential to provide individualized temperature regulation in a “live” garment.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference47 articles.

1. Thermal comfort evaluated for combinations of energy-efficient personal heating and cooling devices;Build. Environ.,2018

2. Personal cooling garments: A review;J. Text. Inst.,2014

3. Thermal regulating functional performance of PCM garments;Int. J. Cloth. Sci. Technol.,2004

4. Construction of a garment for an integrated liquid cooling system;Text. Res. J.,2015

5. Taylor, C.E., and Lau, S.F. (2000). Thermo-Voltaic Personal Cooling/Heating Device. (6,125,636), US Patent.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3