Spatial–Temporal Distribution and Ecological Risk Assessment of Microplastics in the Shiwuli River

Author:

Hong Lei1234,Meng Xiangwu1,Bao Teng12,Liu Bin1,Wang Qun1,Jin Jie2,Wu Ke23

Affiliation:

1. School of Biology, Food and Environment, Hefei University, Hefei 230601, China

2. Hefei Institute of Environmental Engineering, Hefei University, Hefei 230601, China

3. Collaborative Innovation Center for Environmental Pollution Control and Ecological Restoration of Anhui Province, Hefei 230601, China

4. Anhui Key Laboratory of Sewage Purification and Ecorestoration Materials, Hefei 230001, China

Abstract

This study aimed to investigate the distribution of microplastics (MPs) within the Shiwuli River in Hefei, a Chinese inland city. Water and sediment samples were collected during flood season (from May to September) and non-flood season (from October to April) at 10 representative points along the truck stream. The electron microscope, the laser direct infrared chemical imaging system (LDIR), and the scanning electron microscope (SEM) were used to observe and quantify the colour and shape of the MPs, to identify the number, size, and polymer composition of the MPs, and to observe the microstructures of typical MP particles, respectively. The polymer risk index (RI) model and the pollution load index (PLI) model were used to assess the polymer-related risks and the overall extent of MP pollution in the river, respectively. Analysis of MP abundance for different sampling points showed that the water of Shiwuli River had an average abundance of MPs of 8.4 ± 2.5 particles/L during the flood season and 5.8 ± 1.7 particles/L during the non-flood season; the sediment had an average abundance of MPs of 78.9 ± 8.3 particles/kg during the flood season and 63.9 ± 7.1 particles/kg during the non-flood season. The abundance of MPs of different points was investigated. Result show that the more abundances of MPs were found at confluences with tributaries (S4, S5, and S6), where they are also close to the residential and industrial development, while lower values were found in agricultural areas (S8) and wetland ecological regions (S9 and S10). In water, the maximum appeared at S5 with 21.7 ± 4.6 particles/L during the flood season and 15.9 ± 4.2 particles/L during the non-flood season, respectively; the minimum appeared at S9 with 1.8 ± 1.0 particles/L during the flood season and 2.2 ± 0.4 particles/L during the non-flood season, respectively. In sediment, the maximum appeared at S5 with 174.1 ± 10.1 particles/kg during the flood season and 143.6 ± 10.4 particles/kg during the non-flood season, respectively; the minimum appeared at S8 with 10.3 ± 2.8 particles/kg during the flood season and at S9 with 12.1 ± 3.2 particles/kg during the non-flood season, respectively. MP characteristics were also studied. Results show that the MPs mainly exhibited a fibroid morphology (27.90–34%), and red-coloured particles (19.10%) within the smaller size less than 500 μm (38.60%) were more prevalent. Additionally, the result of LDIR scanning shows that a total of eleven types of MP polymers were found in the river water and sediment, including acrylates (ACR), chlorinated polyethylene (CPE), ethylene vinyl acetate (EVA), polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), polyurethane (PU), polyvinylchloride (PVC), polyamide (PA), and silicon. The most common particle was PE (19.3–21.6%). Furthermore, the environmental risk assessment demonstrated that the PS polymer posed a Level-III risk in the water samples and a Level-II risk in the sediment samples from the Shiwuli River. The remaining polymer types exhibited Level-I risk. The PLIzone value for water was 2.24 during the flood season, indicating heavy pollution, and 1.66 during the non-flood season, indicating moderate pollution. Similarly, the PLIzone value for sediments was 2.34 during the flood season and 1.91 during the non-flood season, both suggesting a heavy pollution. These findings highlight the potential risk posed by MP pollution in the Shiwuli River to the quality of drinking water sources in Chaohu Lake in Hefei. They provide valuable insights into management, pollution control, and integrated management strategies pertaining to MPs in urban inland rivers in Hefei.

Funder

Anhui Key Laboratory of Sewage Purification and Eco-restoration Materials

Anhui innovation team for municipal solid waste treatment

National Special Item on Water Resource and Environment

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference57 articles.

1. Supporting online material, lost at sea, where is all the plastic, material and methods;Thompson;Science,2004

2. Zhao, Q., Zhao, X., and Cao, J. (2020). Advanced Nanomaterials for Pollutant Sensing and Environmental Catalysis, Elsevier.

3. Microplastics and nanoplastics in aquatic environments, aggregation, deposition, and enhanced contaminant transport;Alimi;Environ. Sci. Technol.,2018

4. Potential toxicity of polystyrene microplastic particles;Hwang;Sci Rep.,2020

5. Microplastics as contaminants in the soil environment, a mini-review;Wang;Sci. Total Environ.,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3