Differences of Nitrogen Transformation Pathways and Their Functional Microorganisms in Water and Sediment of a Seasonally Frozen Lake, China

Author:

Tian Zhiqiang12,Zhang Sheng1,Lu Junping1,Shi Xiaohong1,Zhao Shengnan1,Sun Biao1,Wang Yanjun13ORCID,Li Guohua1,Cui Zhimou1,Pan Xueru1,Li Guoguang4,Zhang Zixuan1

Affiliation:

1. College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China

2. Department of Water Conservancy and Civil Engineering, Hetao College, Bayannur 015000, China

3. Vocational and Technical College of Inner Mongolia Agricultural University, Baotou 014109, China

4. College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010011, China

Abstract

Nitrogen is one of the most important elements involved in ecosystem biogeochemical cycling. However, little is known about the characteristics of nitrogen cycling during the ice-covered period in seasonally frozen lakes. In this study, shotgun metagenomic sequencing of subglacial water and sediment from Lake Ulansuhai was performed to identify and compare nitrogen metabolism pathways and microbes involved in these pathways. In total, ammonia assimilation was the most prominent nitrogen transformation pathway, and Bacteria and Proteobacteria (at the domain and phylum levels, respectively) were the most abundant portion of microorganisms involved in nitrogen metabolism. Gene sequences devoted to nitrogen fixation, nitrification, denitrification, dissimilatory nitrate reduction to ammonium, and ammonia assimilation were significantly higher in sediment than in surface and subsurface water. In addition, 15 biomarkers of nitrogen-converting microorganisms, such as Ciliophora and Synergistetes, showed significant variation between sampling levels. The findings of the present study improve our understanding of the nitrogen cycle in seasonally frozen lakes.

Funder

Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region

National Natural Science Foundation of China

Inner Mongolia Autonomous Region Science and Technology Plan

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3