Secure Authentication Protocol for Wireless Sensor Networks in Vehicular Communications

Author:

Yu SungJinORCID,Lee JoonYoung,Lee KyungKeun,Park KiSung,Park YoungHo

Abstract

With wireless sensor networks (WSNs), a driver can access various useful information for convenient driving, such as traffic congestion, emergence, vehicle accidents, and speed. However, a driver and traffic manager can be vulnerable to various attacks because such information is transmitted through a public channel. Therefore, secure mutual authentication has become an important security issue, and many authentication schemes have been proposed. In 2017, Mohit et al. proposed an authentication protocol for WSNs in vehicular communications to ensure secure mutual authentication. However, their scheme cannot resist various attacks such as impersonation and trace attacks, and their scheme cannot provide secure mutual authentication, session key security, and anonymity. In this paper, we propose a secure authentication protocol for WSNs in vehicular communications to resolve the security weaknesses of Mohit et al.’s scheme. Our authentication protocol prevents various attacks and achieves secure mutual authentication and anonymity by using dynamic parameters that are changed every session. We prove that our protocol provides secure mutual authentication by using the Burrows–Abadi–Needham logic, which is a widely accepted formal security analysis. We perform a formal security verification by using the well-known Automated Validation of Internet Security Protocols and Applications tool, which shows that the proposed protocol is safe against replay and man-in-the-middle attacks. We compare the performance and security properties of our protocol with other related schemes. Overall, the proposed protocol provides better security features and a comparable computation cost. Therefore, the proposed protocol can be applied to practical WSNs-based vehicular communications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3