Real-Time Traffic Sign Detection and Recognition Method Based on Simplified Gabor Wavelets and CNNs

Author:

Shao FamingORCID,Wang Xinqing,Meng Fanjie,Rui Ting,Wang Dong,Tang Jian

Abstract

Traffic sign detection and recognition plays an important role in expert systems, such as traffic assistance driving systems and automatic driving systems. It instantly assists drivers or automatic driving systems in detecting and recognizing traffic signs effectively. In this paper, a novel approach for real-time traffic sign detection and recognition in a real traffic situation was proposed. First, the images of the road scene were converted to grayscale images, and then we filtered the grayscale images with simplified Gabor wavelets (SGW), where the parameters were optimized. The edges of the traffic signs were strengthened, which was helpful for the next stage of the process. Second, we extracted the region of interest using the maximally stable extremal regions algorithm and classified the superclass of traffic signs using the support vector machine (SVM). Finally, we used convolution neural networks with input by simplified Gabor feature maps, where the parameters were the same as the detection stage, to classify the traffic signs into their subclasses. The experimental results based on Chinese and German traffic sign databases showed that the proposed method obtained a comparable performance with the state-of-the-art method, and furthermore, the processing efficiency of the whole process of detection and classification was improved and met the real-time processing demands.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward Effective Traffic Sign Detection via Two-Stage Fusion Neural Networks;IEEE Transactions on Intelligent Transportation Systems;2024-08

2. Two-Stage Traffic Sign Classification System;Procedia Computer Science;2024

3. Melanoma Unveiled: Harnessing Convolutional Neural Network ResNet 50 for Precise Segmentation and Detection;2023 7th International Conference on Electronics, Communication and Aerospace Technology (ICECA);2023-11-22

4. Improved Faster R-CNN Traffic Sign Detection Algorithm Based on Transformer;Journal of Physics: Conference Series;2023-11-01

5. Real-time traffic sign detection network based on Swin Transformer;2023-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3