Annotation and Characterization of the Zacco platypus Genome

Author:

Nam Sang-Eun1ORCID,Bae Dae-Yeul2,Rhee Jae-Sung134ORCID

Affiliation:

1. Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea

2. Institute of Korea Eco-Network, Daejeon 34028, Republic of Korea

3. Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea

4. Yellow Sea Research Institute, Incheon 22012, Republic of Korea

Abstract

The pale chub Zacco platypus (Cypriniformes; Xenocyprididae; Jordan & Evermann, 1902) is widely distributed across freshwater ecosystems in East Asia and has been recognized as a potential model fish species for ecotoxicology and environmental monitoring. Here, a high-quality de novo genome assembly of Z. platypus was constructed through the integration of a combination of long-read Pacific Bioscience (PacBio) sequencing, short-read Illumina sequencing, and Hi-C sequencing technologies. Z. platypus has the smallest genome size compared to other species belonging to the order Cypriniformes. The assembled genome encompasses 41.45% repeat sequences. As shown in other fish, a positive correlation was observed between genome size and the composition of transposable elements (TE) in the genome. Among TEs, a relatively higher rate of DNA transposon was observed, which is a common pattern in the members of the order Cypriniformes. Functional annotation was processed using four representative databases, identifying a core set of 12,907 genes shared among them. Orthologous gene family analysis revealed that Z. platypus has experienced more gene family contraction rather than expansion compared to other Cypriniformes species. Among the uniquely expanded gene families in Z. platypus, detoxification and stress-related gene families were identified, suggesting that this species could represent a promising model for ecotoxicology and environmental monitoring. Taken together, the Z. platypus genome assembly will provide valuable data for omics-based health assessments in aquatic ecosystems, offering further insights into the environmental and ecological facets within this species.

Funder

Korea Environment Industry & Technology Institute (KEITI) through Aquatic Ecosystem Conservation Research Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3