Abstract
Blockchain and IoT are being deployed at a large scale in various fields including healthcare for applications such as secure storage, transactions, and process automation. IoT devices are resource-constrained, have no capability of security and self-protection, and can easily be hacked or compromised. Furthermore, Blockchain is an emerging technology with immutability features which provide secure management, authentication, and guaranteed access control to IoT devices. IoT is a cloud-based internet service in which processing and collection of user’s data are accomplished remotely. Smart healthcare also requires the facility to provide the diagnosis of patients located remotely. The smart health framework faces critical issues such as data security, costs, memory, scalability, trust, and transparency between different platforms. Therefore, it is important to handle data integrity and privacy as the user’s authenticity is in question due to an open internet environment. Several techniques are available that primarily focus on resolving security issues i.e., forgery, timing, denial of service and stolen smartcard attacks, etc. Blockchain technology follows the rules of absolute privacy to identify the users associated with transactions. The motivation behind the use of Blockchain in health informatics is the removal of the centralized third party, immutability, improved data sharing, enhanced security, and reduced overhead costs in distributed applications. Healthcare informatics has some specific requirements associated with the security and privacy along with the additional legal requirements. This paper presents a novel authentication and authorization framework for Blockchain-enabled IoT networks using a probabilistic model. The proposed framework makes use of random numbers in the authentication process which is further connected through joint conditional probability. Hence, it establishes a secure connection among IoT devices for further data acquisition. The proposed model is validated and evaluated through extensive simulations using the AVISPA tool and the Cooja simulator, respectively. Experimental results analyses show that the proposed framework provides robust mutual authenticity, enhanced access control, and lowers both the communication and computational overhead cost as compared to others.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献