Variability of Leaf Wetting and Water Storage Capacity of Branches of 12 Deciduous Tree Species

Author:

Anna Klamerus-Iwan,Sylwia ŁaganORCID,Marcin ZarekORCID,Ewa Słowik-Opoka,Wojtan Bartłomiej

Abstract

Leaf surface wettability and factors which determine it are key in determining the water storage capacity of tree crowns and thus the interception of entire stands. Leaf wettability, expressed as the droplet inclination angle, and the surface free energy largely depend not only on the chemical composition of the leaves but also on their texture. The study concerns 12 species of trees common in Central Europe. The content of epicuticular waxes was determined in the leaves, and values ranging from 9.145 [µg/cm2] for horse chestnut (Aesculus hippocastanum L.) to 71.759 [µg/cm2] for birch (Betula pendula Roth.) were obtained. Each additional µg/cm2 increases the canopy water storage capacity by 0.067 g g−1. For all species, the inclination angles of water, diiodomethane and glycerin droplets to the leaf surface were measured and the surface free energy was calculated. It is shown that it is the wax content and the species that constitute independent predictors of water storage capacity. These factors explain the 95.56% effect on the value of canopy water storage capacity. The remaining 4.44% indicate non-species-related individual features or the ability to mitigate pollutants as well as possible environmental factors. Wax analyzed separately from other factors causes a slight increase (by 0.067 g/g) of S. Nevertheless, the influence of the surface condition as a result of species-related variability is decisive for the value of the canopy water storage capacity.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3