Linking Tree Health, Rhizosphere Physicochemical Properties, and Microbiome in Acute Oak Decline

Author:

Pinho DiogoORCID,Barroso Cristina,Froufe Hugo,Brown Nathan,Vanguelova Elena,Egas Conceição,Denman SandraORCID

Abstract

Forest decline diseases are complex processes driven by biotic and abiotic factors. Although information about host–microbiome–environment interactions in agricultural systems is emerging rapidly, similar studies on tree health are still in their infancy. We used acute oak decline (AOD) as a model system to understand whether the rhizosphere physicochemical properties and microbiome are linked to tree health by studying these two factors in healthy and diseased trees located in three sites in different AOD stages—low, mid and severe. We found significant changes in the rhizosphere properties and microbiome composition across the different AOD sites and between the tree health conditions. Rhizosphere pH correlated with microbiome composition, with the microbial assemblages changing in more acidic soils. At the severe AOD site, the oak trees exhibited the lowest rhizosphere pH and distinct microbiome, regardless of their health condition, whereas, at the low and mid-stage AOD sites, only diseased trees showed lower pH and the microbial composition differed significantly from healthy trees. On these two sites, less extreme soil conditions and a high presence of host-beneficial microbiota were observed in the healthy oak trees. For the first time, this study gathers evidence of associations among tree health conditions, rhizosphere properties and microbiome as well as links aboveground tree decline symptoms to the belowground environment. This provides a baseline of rhizosphere community profiling of UK oak trees and paves the way for these associations to be investigated in other tree species suffering decline disease events.

Publisher

MDPI AG

Subject

Forestry

Reference78 articles.

1. Forest health and global change

2. The Consequence of Tree Pests and Diseases for Ecosystem Services

3. Forest Health in a Changing World

4. Forest decline concepts: An overview;Manion,1992

5. Tree Disease Concepts;Manion,1981

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3