Exploring Focus and Depth-Induced Saliency Detection for Light Field

Author:

Zhang Yani1ORCID,Chen Fen12ORCID,Peng Zongju12ORCID,Zou Wenhui2ORCID,Zhang Changhe1

Affiliation:

1. School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, China

2. Faculty of Information Science and Engineering, Ningbo University, No. 818, Ningbo 315211, China

Abstract

An abundance of features in the light field has been demonstrated to be useful for saliency detection in complex scenes. However, bottom-up saliency detection models are limited in their ability to explore light field features. In this paper, we propose a light field saliency detection method that focuses on depth-induced saliency, which can more deeply explore the interactions between different cues. First, we localize a rough saliency region based on the compactness of color and depth. Then, the relationships among depth, focus, and salient objects are carefully investigated, and the focus cue of the focal stack is used to highlight the foreground objects. Meanwhile, the depth cue is utilized to refine the coarse salient objects. Furthermore, considering the consistency of color smoothing and depth space, an optimization model referred to as color and depth-induced cellular automata is improved to increase the accuracy of saliency maps. Finally, to avoid interference of redundant information, the mean absolute error is chosen as the indicator of the filter to obtain the best results. The experimental results on three public light field datasets show that the proposed method performs favorably against the state-of-the-art conventional light field saliency detection approaches and even light field saliency detection approaches based on deep learning.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Science and Technology Research Program of the Chongqing Municipal Education Commission

Scientific Research Foundation of the Chongqing University of Technology

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3