Age of Synchronization Minimization Algorithms in Wireless Networks with Random Updates under Throughput Constraints

Author:

He Yuqiao12ORCID,Chen Guozhi12,Chen Yuchao12,Wang Jintao123,Song Jian124

Affiliation:

1. Beijing National Research Center for Information Science and Technology (BNRist), Beijing 100084, China

2. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

3. Research Institute, Tsinghua University in Shenzhen, Shenzhen 518057, China

4. Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

Abstract

This study considers a wireless network where multiple nodes transmit status updates to a base station (BS) through a shared bandwidth-limited channel. Considering the random arrival of status updates, we measure the data freshness with the age of synchronization (AoS) metric; specifically, we use the time elapsed since the latest synchronization as a metric. The objective of this study is to minimize the weighted sum of the average AoS of the entire network while meeting the minimum throughput requirement of each node. We consider both the central scheduling scenario and the distributed scheduling scenario. In the central scheduling scenario, we propose the optimal stationary randomized policy when the transmission feedback is unavailable and the max-weight policy when it is available. In the distributed scenario, we propose a distributed policy. The complexity of the three scheduling policies is significantly low. Numerical simulations show that the policies can satisfy the throughput constraint in the central controlling scenario and the AoS performance of the max-weight policy is close to the lower bound.

Funder

National Key Research and Development Program of China

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3