Wide-Angular Tolerance Optical Filter Design and Its Application to Green Pepper Segmentation

Author:

Yu Jun1ORCID,Zhan Shu2ORCID,Kurihara Toru1ORCID

Affiliation:

1. School of Information, Kochi University of Technology, Kami 782-8502, Kochi, Japan

2. School of Computer Science and Information, Hefei University of Technology, Hefei 230601, China

Abstract

The optical filter is critical in many applications requiring wide-angle imaging perception. However, the transmission curve of the typical optical filter will change at an oblique incident angle due to the optical path of the incident light change. In this study, we propose a wide-angular tolerance optical filter design method based on the transfer matrix method and automatic differentiation. A novel optical merit function is proposed for simultaneous optimization at normal and oblique incidents. The simulation results demonstrate that such a wide-angular tolerance design can realize a similar transmittance curve at an oblique incident angle compared to a normal incident angle. Furthermore, how much improvement in a wide-angular optical filter design for oblique incident contributes to image segmentation remains unclear. Therefore, we evaluate several transmittance curves along with the U-Net structure for green pepper segmentation. Although our proposed method is not perfectly equal to the target design, it can achieve an average 50% smaller mean absolute error (MAE) than the original design at 20∘ oblique incident angle. In addition, the green pepper segmentation results show that wide-angular tolerance optical filter design improves the segmentation of the near-color object about 0.3% at 20∘ oblique incident angle compared to the previous design.

Funder

Cabinet Office

Advanced Next-Generation Greenhouse Horticulture by IoP

Grant-in-Aid for Scientific Research (C) Japan Society for the Promotion of Science (JSPS) KAKENHI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3