Determining the Paleostress Regime during the Mineralization Period in the Dayingezhuang Orogenic Gold Deposit, Jiaodong Peninsula, Eastern China: Insights from 3D Numerical Modeling

Author:

Xie Shaofeng,Mao XianchengORCID,Liu ZhankunORCID,Deng Hao,Chen Jin,Xiao Keyan

Abstract

The Dayingezhuang orogenic gold deposit, located in the northwestern Jiaodong Peninsula, is hosted by the Zhaoping detachment fault, but the paleostress regime during the mineralization period remains poorly understood. In this study, a series of numerical modeling experiments with variable stress conditions were carried out using FLAC3D software to determine the orientation of paleostress and the fluid migration processes during the ore-forming period. The results show that the simple compression or tension stress model led to fluid downward or upward flow along the fault, respectively, accompanying the expansion deformation near the hanging wall or footwall of the Zhaoping fault, which is inconsistent with the known NE oblique mineralization distribution at Dayingezhuang. The reverse and strike-slip model shows that the shear stress was distributed in the gentle dip sites of the fault, and the expansion space occurred in the geometric depression sites of the fault, which is also inconsistent with the known mineralization distribution. The normal and strike-slip model shows that shear stress was distributed in the sites where the fault geometry transforms from steep to gentle. In addition, the expansion deformation zones appeared at sites with dip angles of 35~60° in the footwall and extended along with the NE-trending distribution from shallow to deep levels. The numerical results are quite consistent with the known mineralization, suggesting that the fault movement during the mineralization stage is a combination of the local strike-slip and the NW–SE extension in the Dayingezhuang deposit. Under this stress regime (σ1 NE–SW, σ2 vertical, σ3 NW–SE), the NE dilation zones associated with fault deformation served as channels for the ore-forming fluid migration. Based on the numerical modeling results, the deeper NE levels of the No. 2 orebody in the Dayingezhuang deposit have good prospecting potential. Thus, our study not only highlights that gold mineralization at Dayingezhuang is essentially controlled by the detachment fault geometry associated with certain stress directions but also demonstrates that numerical modeling is a robust tool for identifying potential mineralization.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3