CO2-Water-Rock Interactions in Carbonate Formations at the Tazhong Uplift, Tarim Basin, China

Author:

Ahmat KaisarORCID,Cheng JianmeiORCID,Yu YingORCID,Zhao Ruirui,Li Jie

Abstract

The effects of CO2-water-rock interactions on the injectivity and safety of CO2 geological storage have drawn wide attention. The geochemical reaction mechanisms in carbonate formations after CO2 injection are still controversial. To better understand the transformation of injected CO2 in carbonates and the involved geochemical reactions, we first conducted autoclave experiments reproducing the in-situ conditions of the Lianglitage Formation, Yingshan Formation, and Qiulitage Formation at the Tazhong Uplift in the Tarim Basin. We then established a batch model using TOUGHREACT-ECO2H, validated with the experimental results, to simulate the long-term CO2-water-rock interactions. It was found that the initial mineral compositions and water chemistry have important effects on the CO2-water-rock interactions in carbonate formations. The experiment results show that the dissolution of calcite and dolomite dominates in the early reaction period. However, we still observed some secondary minerals, such as ankerite, montmorillonite, calcite, and dolomite. The CO2-water-rock reactions can be more dramatic when the contents of calcite and dolomite in carbonates are closer. Moreover, the long-term simulation results show that calcite, magnesite, and hematite are the main formed secondary minerals, whereas dolomite is the major dissolved mineral. This study is helpful for a better understanding of the CO2 mineral trapping mechanism in carbonate formations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference55 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3