Solidification/Stabilization of MSWI Fly Ash Using a Novel Metallurgical Slag-Based Cementitious Material

Author:

Deng Wei,Fu PingfengORCID,Fang Guiwen,Zhu Wan,Li Shan,Wang Xiaofei,Xue Tianli,Chen Yuqi

Abstract

Four industrial wastes, i.e., blast furnace slag, steel slag, desulfurization ash, and phosphoric acid sludge, were used to prepare a low-carbon binder, metallurgical slag-based cementitious material (MSCM). The feasibility of solidification/stabilization of municipal solid waste incineration (MSWI) fly ashes by MSCM were evaluated, and the immobilization mechanisms of heavy metals were proposed. The MSCM paste achieved 28-day strength of 35.2 MPa, showing its high-hydration reactivity. While the fly ash content was as high as 80 wt.%, the 28-day strength of MSCM-fly ash blocks reached 2.2 MPa, and the leaching concentrations of Pb, Zn, Cr, and Hg were much lower than the limit values of the Chinese landfill standard (GB 16889-2008). The immobilization rates of each heavy metal reached 98.75–99.99%, while four kinds of MSWI fly ashes were solidified by MSWI at fly ash content of 60 wt.%. The 28-day strength of binder-fly ash blocks had an increase of 104.92–127.96% by using MSCM to replace ordinary Portland cement (OPC). Correspondingly, the lower leachability of heavy metals was achieved by using MSCM compared to OPC. The mechanisms of solidification/stabilization treatment of MSWI fly ash by MSCM were investigated by XRD, SEM, and TG-DSC. Numerous hydrates, such as calcium silicate hydrate (C-S-H), ettringite (AFt), and Friedel’s salt, were observed in hardened MSCM-fly ash pastes. Heavy metals from both MSWI fly ash and MSCM could be effectively immobilized via adsorption, cation exchange, precipitation, and physical encapsulation.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Special Project for the Reform and Development of Public Service Research Institutes of Beijing

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3