Mineralogical, Textural and Chemical Characteristics of Ophiolitic Chromitite and Platinum Group Minerals from Kabaena Island (Indonesia): Their Petrogenetic Nature and Geodynamic Setting

Author:

Idrus ArifudinORCID,Septiana Sara,Zaccarini Federica,Garuti Giorgio,Hasria HasriaORCID

Abstract

This contribution presents the first systematic mineralogical study of chromite composition, silicates and PGM (platinum group minerals) by electron microprobes in the podiform chromitite of Kabaena Island (Indonesia) mined in the past. The main target of this study is to understand the petrogenetic nature of the parental melt from which the chromitites of Kabaena Island precipitated and, indirectly, define the geodynamic tectonic setting of their emplacement. The evolution of PGM, from the magmatic stage to low-temperature processes, is also discussed. The variation of the Cr# = Cr/(Cr + Al), being comprised between 0.65 and 0.75, is similar to the podiform-type chromitite and indicates the absence of Al-rich chromitite. The calculated composition of the parental melt varies from arc to MORB (mid-ocean ridge basalts). Several grains of olivine and clinopyroxene have been found in the silicate matrix or included in fresh chromite. Olivine shows a composition typical of a hosted mantle, and clinopyroxene is similar to those analyzed in the forearc of an SSZ (supra-subduction zone). Small PGM, varying in size from 1 to 10 μm, occur in the chromitites. The most abundant PGM is laurite, which has been found included in fresh chromite or in contact with ferrian chromite along the cracks in the chromite. Laurite forms polygonal crystals, and it occurs as a single phase or in association with clinopyroxene and amphibole. Tiny blebs of Ir-Os alloy (less than 2 μm across) have been found associated with grains of awaruite in the serpentine gangue of the chromitites. The composition of the investigated chromitites suggests that they formed in the mantle of a forearc ophiolite. All the discovered grains of laurite are considered to be magmatic in origin, i.e., entrapped as solid phases during the crystallization of chromite at temperatures above 1000 °C and a sulfur fugacity below sulfur saturation. Iridium–osmium alloys are secondary in origin and represent a low-temperature, around 400 °C, exsolution product.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3