Phosphate Record in Pleistocene-Holocene Sediments from Denisova Cave: Formation Mechanisms and Archaeological Implications

Author:

Sokol Ella V.,Kozlikin Maxim B.ORCID,Kokh Svetlana N.,Nekipelova Anna V.,Kulik Natalya A.,Danilovsky Viktoria A.,Khvorov Pavel V.,Shunkov Michael V.

Abstract

The distribution of authigenic phosphates in the sedimentary sequence of prehistoric Denisova Cave (Altai, South Siberia) has important archeological implications. The sampled Late Pleistocene–Early Holocene sedimentary sequence in the East Chamber of the cave consists of argilo-sandy-phosphatic sediments intercalated with guano layers of insectivorous bats. The sediments bear partially degraded N-rich organic matter (OM); chitin fragments enriched in S, P, Zn, and Cu; and a set of phosphates. The guano layers record at least three prolonged episodes of cave occupation by colonies of insectivorous bats between 10 kyr and 5 kyr BP, after people had left the cave or visited it rarely in small groups. The formation of phosphates follows the OM biodegradation pathways, with acidic leaching and gradual neutralization of P-rich solutions. The depth profile of authigenic phosphates shows a suite of mineral assemblages that mark a trend from acidic to slightly alkaline pH conditions of guano degradation (from top to bottom): ardealite, taranakite, and leucophosphite corresponding to acidic environments; whitlockite, brushite, and hydroxylapatite, which are stable under slightly acidic and neutral conditions; and hydroxylapatite in coexistence with calcite and stable at the bottom of the leaching profile under alkaline conditions. Authigenic phosphates can be used as reliable indicators of human non-occupation (abandonment) periods of Denisova Cave. Acidic leaching is responsible for disturbance and/or elimination of archaeological and paleontological materials in Late Pleistocene–Early Holocene sediments that were exposed to at least three “acidic waves”.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3