Abstract
The excessive input of heavy metals such as vanadium (V) into the environment has been one of the consequences of global industrial development. Excessive exposure to V can pose a potential threat to ecological safety and human health. Due to the heterogeneous composition and reactivity of the various elements in soils and sediments, quantitative analysis of the chemical speciation of V in different environmental samples is very complicated. The analysis of V chemical speciation can further reveal the bioavailability of V and accurately quantify its ecotoxicity. This is essential for assessing for exposure and for controlling ecological risks of V. Although the current investigation technologies for the chemical speciation of V have grown rapidly, the lack of comprehensive comparisons and systematic analyses of these types of technologies impedes a more comprehensive understanding of ecosystem safety and human health risks. In this review, we studied the chemical and physical extraction methods for V from multiple perspectives, such as technological, principle-based, and efficiency-based, and their application to the evaluation of V bioavailability. By sorting out the advantages and disadvantages of the current technologies, the future demand for the in situ detection of trace heavy metals such as V can be met and the accuracy of heavy metal bioavailability prediction can be improved, which will be conducive to development in the fields of environmental protection policy and risk management.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献