Role of Defects and Radiation Damage on He Diffusion in Magnetite: Implication for (U-Th)/He Thermochronology

Author:

Bassal Fadel,Roques Jérôme,Corre Marianna,Brunet Fabrice,Ketcham RichardORCID,Schwartz StéphaneORCID,Tassan-Got Laurent,Gautheron Cécile

Abstract

The discovery of He retentivity in magnetite has opened up the use of the magnetite (U-Th)/He method as a thermochronometer to date the exhumation of mafic and ultramafic rocks, and also as a chronometer to date magnetite crystallization during serpentinization. However, published He diffusion data reveal more complex behavior than expected. To resolve this issue and generalize the understanding of He retention in magnetite, we conducted a multiscale theoretical study. We investigated the impact of natural point-defects (i.e., vacancies unrelated to radiation damage) and defects associated with radiation damage (i.e., vacancies and recoil damage that form amorphous zones) on He diffusion in magnetite. The theoretical results show that He diffusion is purely isotropic, and that defect-free magnetite is more He diffusive than indicated by experimental data on natural specimen. Interestingly, the obtained theoretical trapping energy of vacancies and recoil damage are very similar to those obtained from experimental diffusion data. These results suggest that He diffusion in magnetite is strongly controlled by the presence of vacancies and radiation damage, even at very low damage dose. We propose that, when using magnetite (U-Th)/He thermochronometry, the impact of vacancies and radiation damage on He retention behavior should be integrated.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3