Rare Earth Element Geochemistry of Late Cenozoic Island Carbonates in the South China Sea

Author:

Liu Xiao-FengORCID,Zhai Shikui,Wang Xi-Kai,Liu Xinyu,Liu Xiao-MingORCID

Abstract

Marine carbonates, precipitating from seawater through inorganic geochemical and biogeochemical processes, are considered to have recorded the seawater geochemical signatures reflecting the marine environmental conditions during their formation. However, they are susceptible to post-depositional diagenetic alteration. The redox conditions and chemical composition of the diagenetic fluid may be different from those of the overlying seawater. Therefore, assessing whether carbonate rocks that have experienced variable diagenesis could still preserve primary seawater geochemistry is a prerequisite before inferring ancient marine environments using geochemical tracers such as the cerium anomaly (Ce/Ce*). Here, we investigate rare earth elements plus yttrium (REY) geochemical features of reefal carbonates from the XK-1 core in the Xisha Islands of the South China Sea. We aim to evaluate whether island carbonates have the potential to preserve reliable primary seawater REY geochemical characteristics after experiencing meteoric diagenesis, marine burial diagenesis, or dolomitization. The results show that even after variable diagenetic alteration, all carbonate samples exhibit seawater-like REY patterns, which are characterized by negative Ce anomalies (Ce/Ce* < 1), distinctively high Y/Ho ratios (>44), and uniform depletion of light rare earth elements (LREE) relative to heavy rare earth elements (HREE) ((Pr/Yb)N < 1). This suggests that the original seawater REY signatures are retained, regardless of varying degrees of changes in the mineralogical composition, diagenetic fluid composition, and redox state. The unmodifiable REY characteristics in carbonates during diagenesis can be attributed to three aspects: (1) during meteoric diagenesis, the low REY content of meteoric fluids and the short-term reactions between fluids and carbonates make it difficult to significantly alter the REY composition of carbonates; (2) during marine burial diagenesis, the ubiquitous cementation creates a relatively closed environment that facilitates the inheritance of REY signatures from primary carbonates; (3) during dolomitization, the dolomitizing fluids derived from penecontemporaneous seawater would not destroy but rather promote the preservation of the original seawater REY signatures in dolostones. The Ce/Ce* variations indicate that the Xisha carbonates have been deposited under constantly oxic conditions since the Neogene, consistent with paleontological and redox-sensitive element geochemical evidence.

Funder

Project of China National Offshore Oil Corporation (CNOOC) Limited

National Science and Technology Major Project

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3