Response Surface Methodology Analysis of the Effect of the Addition of Silicone Oil on the Transfer of Carbon Dioxide during Bioleaching of Mining Tailings by Native Microorganisms

Author:

Zazueta-Álvarez DavidORCID,Medrano-Roldán Hiram,Vázquez-Ortega PerlaORCID,Núñez-Núñez CynthiaORCID,Fierros-Romero GriselORCID,Rojas-Contreras Juan,Álvarez-Álvarez Carlos,Reyes-Jáquez DamiánORCID

Abstract

The bioleaching of manganese present in mining waste after metal extraction can be catalyzed by Leptospirillum (L.) ferriphilum by allowing atmospheric carbon dioxide to be used in this autotrophic process and generating the subsequent recovery of silver. Bioleaching of metals is widely performed in agitated tanks; therefore, it is important to assess the mass transfer capacity of gaseous substrates, such as carbon dioxide, during the microbial processes. The main objective of this research was to evaluate the effects of the presence and concentration of a transfer vector (silicone oil) added into a stirred-tank bioreactor during bioleaching of mining tailings catalyzed by L. ferriphilum, determined by the combined gas/oil mass transfer coefficient of carbon dioxide (kLaCO2) into the aqueous phase. The experiments were carried out following a Box–Behnken experimental design, evaluating the concentrations of mining waste (30%, 40%, and 50%), Fe2+, serving as electron donor (2, 8, and 14 g/L), and silicon oil (0%, 5%, and 10%). A significant increase in kLaCO2 was observed after the addition of the transfer vector by comparing the lowest kLaCO2 value of 1.68 h−1 (obtained at 50% pulp, 8 g/L Fe2+, and 0% silicone oil) and the highest kLaCO2 of 21.81 h−1 (obtained at 30% pulp, 2 g/L Fe2+, 5% silicone oil). The results showed statistically significant differences in the transfer of carbon dioxide during the bioleaching process with a transfer vector.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3