The Challenges and Prospects of Recovering Fine Copper Sulfides from Tailings Using Different Flotation Techniques: A Review

Author:

Bilal MuhammadORCID,Park IlhwanORCID,Hornn VothyORCID,Ito Mayumi,Hassan Fawad,Jeon Sanghee,Hiroyoshi Naoki

Abstract

Flotation is a common mineral processing method used to upgrade copper sulfide ores; in this method, copper sulfide mineral particles are concentrated in froth, and associated gangue minerals are separated as tailings. However, a significant amount of copper is lost into tailings during the processing; therefore, tailings can be considered secondary resources or future deposits of copper. Particle–bubble collision efficiency and particle–bubble aggregate stability determines the recovery of target particles; this attachment efficiency plays a vital role in the selectivity process. The presence of fine particles in the flotation circuit is because of excessive grinding, which is to achieve a higher degree of liberation. Complex sulfide ores of markedly low grade further necessitate excessive grinding to achieve the maximum degree of liberation. In the flotation process, fine particles due to their small mass and momentum are unable to collide with rising bubbles, and their rate of flotation is very slow, further lowering the recovery of target minerals. This collision efficiency mainly depends on the particle–bubble size ratio and the concentration of particles present in the pulp. To overcome this problem and to maintain a favorable particle–bubble size ratio, different techniques have been employed by researchers to enhance particle–bubble collision efficiency either by increasing particle size or by decreasing bubble size. In this article, the mechanism of tailing loss is discussed in detail. In addition, flotation methods for fine particles recovery such as microbubble flotation, column flotation, nanobubble flotation, polymer flocculation, shear flocculation, oil agglomeration, and carrier flotation are reviewed, and their applications and limitations are discussed in detail.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3