Author:
Zheng Kaidan,Xuan Dayang,Li Jian
Abstract
The mining-induced overburden bed separation grouting technique can control surface subsidence through the high-pressure grouting and filling into the bed separation during mining. The physical simulation method can be used to objectively reproduce the dynamic migration process of filling slurry in the bed separation but the traditional similar-simulation materials are not suitable for the simulation of bed separation grouting. Considering the water disintegration, weak water storage capacity, and poor permeability of traditional simulation materials, the existing similar-simulation materials were modified in this study. The improved similar-simulation materials have adjustable physical and mechanical parameters, stable properties in a water-filled environment, and high water storage and permeability, and the reasonable ratio of similar-simulation materials was determined for hard rock, medium-hard rock, and soft rock. The similarity simulation function suitable for bed separation grouting was deduced and the time similarity coefficient and permeability similarity coefficient of the bed separation grouting simulation were obtained to judge the similarity and applicability of similar-simulation materials with specific proportions. This study provides a reliable experimental simulation scheme for the physical simulation of mining-induced bed separation grouting and provides a theoretical basis for the improvement of similar-simulation materials with fluid–solid characteristics.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
National Science Fund for Excellent Young Scholars
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献