Biomineralization of Carbonates Induced by Mucilaginibacter gossypii HFF1: Significant Role of Biochemical Parameters

Author:

Sun Bin,Jiang Junbing,Tao Jiali,Han Zuozhen

Abstract

Although the precipitation of carbonate minerals induced by various bacteria is widely studied, the changes in the biochemical parameters, and their significant role in the biomineralization processes, still need further exploration. In this study, Mucilaginibacter gossypii HFF1 was isolated, identified, and used to induce carbonate minerals at various Mg/Ca ratios. The biochemical parameters were determined in order to explore the biomineralization mechanisms, including cell concentration, pH, ammonia, carbonic anhydrase activity, and alkaline phosphatase activity. The characteristics of extracellular minerals and intracellular inclusions were both analyzed. In addition, the amino acid composition of the extracellular polymeric substance was also tested. Results show that the biochemical parameters provide an alkaline environment for precipitation, due to the combined effect of ammonia, carbonic anhydrase, and alkaline phosphatase. Biotic minerals are characterized by preferred orientation, specific shape, and better crystalline and better thermal stability, indicating their biogenesis. Most of the amino acids in the extracellular polymeric substance are negatived charged, and facilitate the binding of magnesium and calcium ions. The particles with weak crystalline structure in the EPS prove that it acts as a nucleation site. Intracellular analyses prove the presence of the intracellular amorphous inclusions. Our results suggest that the changes in the biochemical parameters caused by bacteria are beneficial to biomineralization, and play a necessary role in its process. This offers new insight into understanding the biomineralization mechanism of the bacteria HFF1.

Funder

Basic Research Program of Shanxi Province

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3